
Student Name: Hanna Jiamei Zhang Student ID#: 1003142155

Project Title: Generation of a Combined Bird’s Eye View of a Region
around a Robotic Rover From Omnidirectional Stereo Images

1 Project Problem Description

Research Question: The goal of this project was to answer the question: are we able to get meaningful bird’s
eye view images from 360°omnidirectional/monocular stereo images [1] taken on a small robotic rover travelling
along a path through simulated Mars/Moon terrain?

Project Updates: In the original proposal in addition to the above task, I intended to stitch together
sequential orthophoto images of regions around the rover at a particular time-point to build an aerial map of the
areas the rover traveled along it’s path. This was not implemented ultimately due to the runtime of the code
(which was most slowed down by the python griddata interpolate function in the scipy library). Since it took so
long to generate a single orthophoto of a region around the rover it would have taken a long time to debug this
combined orthophoto map generation feature. I simply didn’t have enough time to get to this part of the project
completed under the time constraints.

The primary functionality of generating a flat orthographic map of a region around the rover at a particular
time point and correcting that for variable sun exposure to improve the readability of that image was achieved
and implemented. In addition, the code generates a pixel correspondence between the location of the pixels in
that orthophoto image to the location of the pixel with respect to the rover body frame (in meters), which could
easily be transformed to the global site frame. With that information it would be a simple extension and brute
force job to generate the sequential orthophotos and stitch them together to build an aerial map of the test site.

Background: For a rover, obstacle prediction and avoidance, as well as path planning all depend on robust
estimates of the 3D positions and dimensions of other entities in the surrounding environment. One way around
this issue is to use rich LiDAR point clouds for accurate measurements of obstacle locations, however due to
the high cost of such units, poor measurements at long distances, and the need for sensor redundancy, 3D
object detection using monocular images for 3D object detection remains a valuable topic to investigate. An
orthographic image/“orthophoto”, also known as a bird’s eye view (BEV) enables us to escape the image domain
by mapping image-based features into an orthographic 3D space. In this orthographic 3D space, where scale is
consistent and distances between objects are meaningful, we can reason holistically about the spatial configuration
of the scene for such obstacle prediction and avoidance. This project is meaningful and interesting because post-
processing stereo omnidirectional images to orthographic/BEV (used interchangeably) images can greatly improve
the understandability of the data to a human user, produce a true-to-scale map which can be useful for reasoning
about the configuration of obstacles in the environment, and give better visualization of the path conditions the
rover traversed.

2 Project Methodology

2.1 High Level Overview

The overarching goal is to generate a BEV image surrounding the rover comprised of BEV transformed stereo
images. This will involve obtaining the individual BEV images from the omnidirectional stereo images (Section
2.2). Then those will need to be stitched together to form a single surround-rover orthophoto (Section 2.3).
Additionally, corrections were made for the varying exposure levels (arising from the sun position) among the
omni-directional camera images taken at the same time step (Section 2.4). The code so far serves as a strong
basis to work off of in order to fufill the last part of the proposal, i.e. stitching together sequential surround-rover
orthophotos to generate an aerial map, Section 2.5 explains the steps to be taken with the current code base to
achieve this objective. See Table 1 for a summary of all the functions used in this project, refer to the submitted
code for more details.

Running the code inside Docker will output the following into the output folder for a given fram:

• 5 original omni-camera images name “img[n].png” n = 0, 1, 2, 3, 4

• the corresponding orthophotos of those 5 images “rgb[n].png” n = 0, 1, 2, 3, 4

• the stitched surround-rover orthophoto called “ALLPXrgb.png”

• a text output of the position and orientation of the orthophoto in “orthophoto pose.txt”

Note that due to limitations in Docker and time it took to get it set up and running properly, the submission as
it is outputs all of these quantities for one time point only (specifically for “fileid = ”2018 09 04 18 18 15 891197””,
“frame = ”000978””). The same code was just run on other time-points to generate the orthophotos at different
time-points in 7 (how to specify what time point to generate an orthophoto is described below).

1



Student Name: Hanna Jiamei Zhang Student ID#: 1003142155

2.2 Generating Individual Orthophotos

The orthographic photo/BEV transformation is a way to generate a top view perspective of an image. To
obtain the BEV image I use the depth information of the terrain shown as the surface in Figure 1. This terrain
depth information was obtained by simply reading in the pre-computed point cloud data provided in the CPET
dataset[1] (this could have also been found by the using stereo camera pairs to compute the dense disparity maps
(as per Assignment 4) which can be used to compute the depth of each pixel and thus the 3D position of that
pixel point). As depicted in Figure 1, at every pixel of the orthophoto, the height/elevation was found through
interpolation (nearest neighbours, bilinear/bicubic, linear, etc.) of the digital surface model, i.e. the point cloud
data (for this project), where the height/elevation information is known only at the specified points in the point
cloud. Each of these interpolated points (which compose the orthophoto grid) on the 3D-surface of the terrain are
then transformed to the camera frame (using knowledge about the camera pose and the fact that the point cloud
is in the reference frame of the respective omni-camera) in order to assign the RBG intensity value of a given
pixel in the orthophoto as the corresponding pixel in original RBG stereo image. The quality of the interpolated
height estimates are crucial and the biggest source of error, because the rover camera view angle is from the side,
not from above. With this side view angle, differences in the height estimate translate directly to the incorrect
mapping to the RGB stereo image, i.e. an incorrect pixel assignment.

It is clear that this process is heavily dependent on the quality of interpolated results. Unfortunately, though
it would have been interesting to do so, there was not enough time to test different interpolation methods and
compare the resulting orthophotos.

The following gives more details on how this translates to the code implementation. In “main()” the code
starts by loading in the omni-camera intrinstics and extrinsics as well as the transforms of the omni-cam to the
omni-sensor (i.e. “allOmni”, “allT OrefP[n]”). Lines 794 and 795 are lines that should be changed to match the
frame and timestamp of the point along the path you want to obtain the orthophoto for, the information for the
timepoints used in this report are in comments on lines 779-788 and summarized in Figure 6. The code is set
up for submission is such that it generates a single surround orthophoto and outputs all the intermediate images
as described in the Section 2.1 (default time-point set to be fileid = “2018 09 04 18 18 15 891197” and frame =
“000978”).

An orthophoto of that single omni-camera image and the corresponding transformed grid in the omni-sensor
frame is generated for every omni-camera n=0,2,4,5,8 in lines 804-840. Note only these “n” cameras are used
because the point clouds in the dataset are measured in the frame of those cameras only. The “getOrthophoto”
function is called for every n. In there the following occurs. The images are loaded in and corrected for lens
distortions and the camera’s intrinsics with OpenCV’s undistort function and for sun effects as per Section 2.4.
The 3D point cloud (has the 3D location of pixels in the frame of the omni-camera in question) is projected
onto the image plane (transformed to pixel coordinates) of the omni-camera using “get3d33d”, which does this
through back-projection, (see formulas below):

x = fx × x

z
+ cx

y = fy ×
y

z
+ cy

z =
z

z

Notice that in the image plane of the omni-camera, the z component is eliminated, and the y and x component
remain (see the “0” frame of the omni-camera in Figure 1) for a visualization of this). Although not shown in
the report this transforms the trapezoid point cloud which has gaps due to rock occlusions (see again Figure 1),
into a rectangle of uniform points (which makes sense because that’s what the camera’s image sensors “see”).

All points that aren’t in the in the range of the 2D image plane of the omni-directional camera are eliminated
using a binary mask. Using bilinear interpolation as per “bilinear interp vectorized”, each back-projected point
in the point cloud is interpolated on the image from the camera for each R, G, B channel. This gives every
point in the point cloud a corresponding pixel colour (denoted “[r,g,b] interp” in the code, this is done on line
520-522). Using the binary mask obtained above, the points in the 3D cloud that aren’t in the omni-image in
question are zeroed out and removed. An appropriate grid (in meters measured with respect to the omni-camera
frame) is generated from the point cloud points that are “in range” and the pixel values that belong in each
of those are interpolated from the (points in point cloud, “[r,g,b] interp”) (point, value) pairs obtained above
using “griddata” from scipy.interpolate in lines 584-586. The single view orthophoto and the grid specifying the
location of each pixel in the omni camera frame are output as a result.

This grid which is in the specified in the omni-camera frame is then transformed to the omni-sensor frame
with the “tranformGrid” function in lines 812, 821, 827, 833, and 839 for each of the n cameras respectively. See
Figure 3 for an example of the 5 orthophoto generated for a single time-point.

2



Student Name: Hanna Jiamei Zhang Student ID#: 1003142155

Figure 1: (left) The process to transform an image to a birds eye view [2]. (right) A depiction of the relation
of the point cloud to the orthophoto/how it is used to generate the orthophoto. This figure outlines explicitly
how occlusions in the original omni-camera image (topmost right corner) are reflected in the 3D point cloud and
orthophoto. Occlusions are a rock on the right and left outlined in purple and yellow respectively.

2.3 Stitching Individual Orthophotos Into One

There are many advanced methods to stitch together the individual orthophotos obtained above, ex. matching
features (ex. Harris Corner Detector), finding the appropriate transformation to align the features, applying
those transformations to the individual stereo images, then stitching the stereo images together. An advanced
method could have been used to remove undesirable “seams” in the stitched “surround”-rover images would be
OpenCV graphs cuts.

A simpler approach outlined in Figure 2 was implemented and are contained within the function “sur-
roundOrthophoto”. It uses a very similar grid interpolation technique as described above. Using the all 5
orthophotos obtained and their corresponding transformed grids (containing the location [meters] of each pixel in
the orthophoto with respect to the common frame of the omni-sensor). Using a similar binary mask technique, all
0 pixel values (i.e. black) are removed because they will interfere with the interpolation see the coloured areas in
the orthophotos in Figure 2 A). All the pixels and their corresponding grids from the 5 images are concatenated
into a master list of all pixels values and a master list of their corresponding grid coordinate pairs specifying
their location in the omni-sensor frame (see B) in the same Figure). A master grid is generated to encompass
all the pixels in all the 5 orthophotos similar to how this was done above (see C) in the same Figure). Using
“griddata” this grid was interpolated on the concatenated pixel coordinate pair data prepared above. As a result
the stitched orthophoto was created (see D) in the same Figure).

Note that after removing the 0 pixels, there is not a lot of overlap with the pixels (see B) in the same Figure).
In addition, because of sun correction, the seam is minimal and the transitions in the combined orthophoto are
smooth.

Figure 2: This outlines the how the individual orthophotos are stitched together to form the combined orthophoto.

3



Student Name: Hanna Jiamei Zhang Student ID#: 1003142155

2.4 Sun Correction

It is important to compensate for the effect the sun’s position relative to the rover because the differences in
darkness that result from it negatively impact the resultant orthophoto’s image quality. The sun’s position with
respect to the rover impacts the auto exposure of each camera in the omni-directional setup independently and
differently. As a result, there are inconsistencies in darkness of the individual orthophotos obtained from these
images, which result in hard to understand stitched orthophotos as seen in Figure b) and d) in 4. In the proposal
I proposed solving this problem by correcting for these exposure variations using gamma correction [5]. Since the
CEPT dataset provides all the individual stereo images as well as the sun pose vector with respect to the rover
body frame the idea was to create a function that calculates the quantity of incident light from the sun on the
camera. Based on the quantity of incident (direct) sunlight on a given stereo camera I would be able to scale the
corresponding gamma adjustments proportionately.

I actually ended up finding a much simpler solution to achieve the same sun exposure correction result, without
using the extra sun pose information. Before transforming to the orthophoto view, the original omni-directional
camera images are corrected for the effect of the sun position by performing a gamma correction on the lower
half of each rover image (precisely all pixels with y position greater than 200) as shown in Figure 4 a). The red
box encapsulates all the representative pixels to be considered when finding an optimal gamma. This gamma is

found using the power-law relationship i.e. γ =
log Vout
log Vin

, with the log Vin being the mean of the representative

pixels and the log Vout being 0.5 ∗ 255 (i.e. the middle of the dynamic range for for 8-bit integer images). A
gamma correction is then performed with this computed gamma on the omni-image in question (see b) in Figure
4. This evens out the dynamic range and centers the image to be the mean of the “dirt” (lower-half) pixels,
making the ground lighter. This is because the sky (being much brighter than dirt and even more brighter where
the sun was) took up a lot of the dynamic range of the camera which the auto-exposure tried to capture. Because
the ground (lower-half) pixels are generally the same across different omni-camera images, after correcting each
image individually, transforming to the orthographic view (as seen in the last row of Figure 3), then snitching
them together (see d) in Figure 4), we see that we get a more pleasant and even image (comparing b) and d) in
Figure 4).

Figure 3: Shows original 5 different omni-directional camera views, the corresponding transformed orthophoto,
and the sun corrected corresponding orthophoto.

Figure 4: Shows the how sun correction was implemented as well as the positive impact it has on the stitched
surround-rover orthophoto results.

4



Student Name: Hanna Jiamei Zhang Student ID#: 1003142155

1 def sunCorrection(i):

2 # take only the bottom pixels (i.e. the ground pixels that will be relevant for the

3 #orthophoto/bird's eye view image)

4 img = i[200:, :, :]

5 # convert img to grayscale

6 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

7 # compute gamma = log(mid*255)/log(mean)

8 mid = 0.5

9 mean = np.mean(gray)

10 gamma = math.log(mid*255)/math.log(mean)

11 # do gamma correction

12 img_gammacorr = np.power(i, gamma).clip(0,255).astype(np.uint8)

13 return img_gammacorr

2.5 Creating A Map

Using similar approaches to those described above it is a small extension (that will require a lot of debugging
and time) to generate a map. It would have been really interesting to see how a generated full map would
look, but unfortunatlly time was tight. Below describes the approach that would have been taken. This was
actually implemented with the current outputs of the implementation manually in Figure 7 which was made for
evaluation. This section describes how it would be executed in code.

Using the pose information from the dataset (“global-pose-utm.txt”) the exact location of the rover the
moment each stereo image were acquired is known (in this implemetation this is found and exported to the
orthophoto pose.txt file). To construct a map the center of each surround-orthophoto image is placed at the
location it was taken [4]. This accounts for the translation of the rover in the map. To account for the changing
orientation of the rover relative to the aerial map it’s moving across, the relative orientation heading derived from
the IMU data (accelerometer, gyroscope i.e. pose information) will be used to apply an appropriate rotational
transformation to the BEV images.

It would have been interested to see the map constructed in this way. I suspect that due to phenomena such
as wheel slip, the results using the GPS information will differ from those generated from a feature matching
technique.

3 Project Evaluation and Results

To evaluate the quality of the individual orthophotos/BEV images produced the resulting orthophotos are com-
pared to the aerial map of the terrain (i.e. the georeferenced map of the MET at the CSA in UTM coordinates
[1]). Rather than compare the pixel values one by one, qualitative visual inspection of the images was performed.
Similarly, the efficacy of the sun-correction is evaluated through qualitative visual inspection. This is all done in
Section 3.2. To evaluate the accuracy of the orthophotos through quantitative evaluation, the distances between
objects in the orthophoto are computed and checked to see if they match what the distance should be in real
life, this is done in Section3.1.

3.1 Quantitative Evaluation: Checking if Distances in Orthophotos are True-To-
Life

In this section, the relative distances between objects in the generated orthomap are checked. It is difficult to get
relative distances between objects just using the georeferenced map of the MET (due to the coarse axis markings).
The idea here is to validate that distances in the orthophoto are true to life (a property of true orthophotos) by
looking at the distance between the wheel tracks in the orthophoto. This is a good choice because the computed
wheel separation from the orthophoto can be compared to a quantity that is actually known accurately (from
mechanical drawings of the rover wheelbase).

The magenta and cyan “+” markers shown in Figure 5 visually mark the pixel locations of both rover tracks
(respectively (x1, y1) = (1250, 665) and (x2, y2) = (1250, 720)), note that these were found ad-hoc visually.
This corresponds to a pixel separation of 55 between the two wheel track features, i.e. the wheels themselves.
This orthophoto was interpolated on a pixel grid (generated as per the methods described above) which has
a corresponding (x,y) grid of pixel locations of the same size which is in meters measured with respect to the
omni-sensor frame. The spacing of the grid for this particular image (as this will vary slighty for each image) is
(xspacing = 0.010009985377303465 [m] and yspacing = 0.010008389408076468 [m]). This means that each pixel
in the image is equivalent to ≈0.01 meters. Thus, the 55 pixel wheel seperation computed in the orthophoto
corresponds to ≈0.55 meters. As per Figure 5 the actual wheel separation taken from the center of the wheels
is 5.45 meters. This result is in the right ballpark from coarse placement of the markers. Thus, distances in the
orthotphoto are correct and thus validates the orthophoto output of this project.

5



Student Name: Hanna Jiamei Zhang Student ID#: 1003142155

This validation method could be improved upon by more more careful placement of the markers used for
measurement (ex. by placing the marker in the exact center of a feature to improve pixel accuracy). Each pixel
corresponds to about a 0.01 meters or 1 cm resolution, but that is not the true resolution of the image features
(because there were distortions from the sampling/interpolation methods used to generate the image). To get a
more accurate estimate of the image features a higher resolution camera, better interpolation methods to generate
the orthophoto, as well as post processing to make the features sharper would all help.

Figure 5: Orthophoto with wheel tracks marked with magenta and cyan markers (left). A technical drawing of
the Clearpath Husky Rover outlining wheelbase dimension [3] (right).

3.2 Qualitative Evaluation: Visual Inspection of Orthophotos and Sun Correction

Besides quantitatively comparing predicated vs. actual distances between objects, another feasible method of
validating this project is evaluating the quality of the output images by visual inspection. Seeing Figure 3, the
effect of sun correction on each individually transformed image is apparent. It is clear that the darker images are
brightened and it’s easier to discern terrain features. As per Figure 4 b) and c) it is clear that the sun corrected
orthophoto (d) is much better than the orthophoto without any sun correction (b). The contrast across the
image (b) is much more uniform throughout and the features are easily identified in all parts of the image. Thus,
it can be concluded that the sun correction implemented was effective in improving the quality of orthophotos.

An orthophoto, is essentially a bird’s eye view of the terrain. The features found in the orthophoto should
thus match those in the aerial map of the terrain (i.e. the georeferenced map of the MET at the CSA in UTM
coordinates [1]). Eight representative time points with interesting orthographic features (outlined in Figure 6)
were selected and the surround-rover orthophotos for those were generated. Using the position and orientation
of the rover at these time points, extracted from “”global-pose-utm.txt”” (information listed in Figure 6), the
location of the rover (frame) with respect to the site frame is known. This was used to locate (on the aerial
map) at what point and in what orientation along the rover’s path the orthophoto should be placed/represents.
The process of finding the location along the patch, marking it, and reorienting the orthophoto to match the
orientation in the aerial map was done manually in an image manipulation software (MS Paint). The result
is Figure 7 where the colour of the annotations match the colour assigned to each representative time point in
Figure 6. The coloured circles on the aerial map correspond to the center of the respective orthophotos, also
marked with the same coloured circle. Features annotated in the appropriate colour in the aerial map correspond
to those annotated in the appropriate surround-orthophoto. Note: the scale of the individual surround-rover or-
thophotos is not equal to that of the aerial map; they are bigger to make it easier to discern the matching features.

As evident in Figure 7, the features match up pretty well. Obstacles such as walls and rocks cause occlusion
in the orthophotos (a whole body of research is dedicated to taking this into account and still generating good
orthophotos), because there is a lack of pixel information of the terrain that is behind the occlusion. Thus,
occlusions (and the fact that the omni-cameras can’t physically see the tops of occlusions) cause the obstacles
to look a little different than one would intuitively expect in the orthophoto (it’s similar but not the same as
the information an aerial map would give). However, under further inspection the correspondences between the
orthophotos and aerial photo are clear. Distinguishing features such as the outline of the barriers, large rocks,
and unique terrain features are clear and annotated in the Figure.

It’s interesting to note the effect of a very close occlusion in the orthophotho of the violet in Figure 7 (or
7th) representative time point. A bright purple “x” marks the location of what seems to be a large rock in the
aerial map and orthophoto in Figure 7 (it must be large if it’s visible in the aerial map). Everything beyond that
(outlined in the same bright shade of purple) is occluded and thus shows up as blurry (due to pixel interpolation)

6



Student Name: Hanna Jiamei Zhang Student ID#: 1003142155

in the orthophoto. How this occurs is more clearly depicted in Figure 1. Again, it’s clear that everything behind
the purple and yellow rocks in this Figure is unknown and shows up as “holes” in the terrain point cloud. Due
to this lack of information, they show up as blurred regions in the resulting orthophoto.

Note: The generated surround-rover orthophotos are centered about the omni-sensor frame. Since the trans-
formation from the omni-sensor to the rover is given, the physical grid coordinates of the orthophoto pixels could
have been transformed to the rover frame for accurate positioning (good to note for a future implementation).
This level of accuracy was not needed for this type of evaluation, thus the omni-sensor center was approximated
to be the rover frame center (a fair assumption considering the scale of comparison with the aerial map).

The manual process of generating Figure 7 by visually visually determining the orientation and position on
the map was a very laborious process and not as accurate as codifying the approach using the exact orientation
and position value. Given the information the code generates so far there is enough there to easily code this up.
In hindsight, given more time it would have been better to read in the aerial map, get the pixel to meters mapping
and execute this process through code. It was difficult to start this project because a strong understanding of
the data available and the orthographic transformation itself had to be developed first. Only after visualizing
a lot of the data (ex. the point cloud data with Python library pptk, displaying at all the omni-images side by
side, and drawing diagrams of how all the frames/images related to each other) was progress made. Debugging
was easier with this project because it’s all very visual and one can simply visualize what going on at each step
to find errors.

Figure 6: This table includes the details of the 8 representative time points selected for comparison with the
aerial map.

References

[1] Olivier Lamarre et al. “The Canadian Planetary Emulation Terrain Energy-Aware Rover Navigation Dataset”.
In: The International Journal of Robotics Research (2020). doi: 10.1177/0278364920908922. url: https:
//doi.org/10.1177/0278364920908922.

[2] RidgeRun. RidgeRun’s Birds Eye View project research. https://developer.ridgerun.com/wiki/index.
php?title=Birds_Eye_View/Introduction/Research. 2020.

[3] Clearpath Robotics. HUSKY UNMANNED GROUND VEHICLE. url: https://clearpathrobotics.

com/husky-unmanned-ground-vehicle-robot/.

[4] Steven Roebert, Tijin Schmits, and Arnoud Visser. “Creating a bird-eye view map using an omnidirectional
camera”. In: Proceedings of the 20th Belgian-Netherlands Conference on Artificial Intelligence (BNAIC 2008)
(2008). url: https://www.researchgate.net/profile/Arnoud_Visser/publication/224773001_

Creating_a_Bird-Eye_View_Map_using_an_Omnidirectional_Camera/links/004635177b0ce9d6df000000.

pdf.

[5] Adrian Rosebrock. OpenCV Gamma Correction. https://www.pyimagesearch.com/2015/10/05/opencv-
gamma-correction/. 2015.

7

https://doi.org/10.1177/0278364920908922
https://doi.org/10.1177/0278364920908922
https://doi.org/10.1177/0278364920908922
https://developer.ridgerun.com/wiki/index.php?title=Birds_Eye_View/Introduction/Research
https://developer.ridgerun.com/wiki/index.php?title=Birds_Eye_View/Introduction/Research
https://clearpathrobotics.com/husky-unmanned-ground-vehicle-robot/
https://clearpathrobotics.com/husky-unmanned-ground-vehicle-robot/
https://www.researchgate.net/profile/Arnoud_Visser/publication/224773001_Creating_a_Bird-Eye_View_Map_using_an_Omnidirectional_Camera/links/004635177b0ce9d6df000000.pdf
https://www.researchgate.net/profile/Arnoud_Visser/publication/224773001_Creating_a_Bird-Eye_View_Map_using_an_Omnidirectional_Camera/links/004635177b0ce9d6df000000.pdf
https://www.researchgate.net/profile/Arnoud_Visser/publication/224773001_Creating_a_Bird-Eye_View_Map_using_an_Omnidirectional_Camera/links/004635177b0ce9d6df000000.pdf
https://www.pyimagesearch.com/2015/10/05/opencv-gamma-correction/
https://www.pyimagesearch.com/2015/10/05/opencv-gamma-correction/


Student Name: Hanna Jiamei Zhang Student ID#: 1003142155

Function Name Description Input(s) Output(s)
bilinear interp vectorized(I, pt) Performs bilinear interpolation for a given set

of image points. Given the (x, y) location
of a point in an input image, use the sur-
rounding 4 pixels to compute the bilinearly-
interpolated output pixel intensity. This
function is for a *single* image band only - for
RGB images, you will need to call the func-
tion once for each colour channel.

I, pt b

compress(grid x, grid y) Given a grid x and grid y of length “p”, we
can compress then into a 2xp numpy array.

grid x, grid y comp

get3d22d(rawpts, allOmni, n) Transforms 3D point cloud data to 2D points
on a plane.

allOmni, n,
rawpts

X, Y

getHomog(pos) Get the Homogenous transform specified by
elements in the pose array.

pos H

getIntrinsicMat(f x, f y, c x, c y) Returns the Camera intrinsics matrix. f x, f y, c x,
c y

K

getOMNI2GPS(sensor2omnicam) Returns the transform from the omnidirec-
tional camera to the GPS frame.

sens2omnicam H

getOMNI2Rover(sensor2omnicam) Returns the transform from the omnidirec-
tional camera frame to the rover frame.

sens2omnicam H

getOmniCamData(n, fileid, in-
put dir)

Returns the nth omni-directional camera im-
age and the corresponding point cloud.

n, fileid,
frame

X, Y

getOrthophoto(n, fileid, frame,
input dir, allOmni)

Gets the Orthophoto/BEV for omni camera
’n’ at a specific timeframe.

n, fileid,
frame

img,
rgb,
grid x,
grid y

loadInfo() Loads the provided intrinsic and extrinsic
camera information provided in the .txt files
in the run data.

N/A allOmni,
allT OrefP

quat2rot(quat) Converts rotations specified by quaternions
to the rotation matrix form.

quat C

sunCorrection(i) Correct for the effect of the auto-exposure
of the omnidirectional camera so that when
stiching the images together there is some
consistency.

i comp

surroundOrthophoto(rgb0, trans-
Grid0, rgb1, transGrid1, rgb2,
transGrid2, rgb3, transGrid3,
rgb4, transGrid4)

Gets the stiched surrounding orthophoto
given all the individual orthophotos at a given
time.

rgb[0,1,2,3,4],
trans-
Grid[0,1,2,3,4]

ALLPXrgb,
grid x,
grid y

transformGrid(transform, grid x,
grid y)

Transform the grid for the orthophoto to the
another frame (specified by “transform”). We
need this because the orthophotos grids are in
the frame of their respective stereo cameras.
By transforming the grid you with this func-
tion, you have the coordinates in meters of
each pixel in the orthophoto with respect to
the a common frame (which you get to by
applying the ’transform’ which is given as an
input to this function).

transform,
grid x, grid y

ptcld rover

transformPose(transform, x, y, C) Transform a point orientation and position
the orthophoto to the another frame (spec-
ified by ’transform’). Similar to transform-
Grid

transform, x,
y, C

transform,
grid x,
grid y

Table 1: A Summary of all the functions used in this project. Functions with a strike-through were written but
not used, they are relevant to the map building portion that was not done.

8



Student Name: Hanna Jiamei Zhang Student ID#: 1003142155

F
ig

u
re

7
:

A
er

ia
l

m
ap

co
m

p
a
ri

so
n

w
it

h
th

e
or

th
op

h
ot

os
ge

n
er

at
ed

at
th

e
ti

m
e-

p
oi

n
ts

sp
ec

ifi
ed

in
F

ig
u

re
6.

9


	Project Problem Description
	Project Methodology
	High Level Overview
	Generating Individual Orthophotos
	Stitching Individual Orthophotos Into One
	Sun Correction
	Creating A Map

	Project Evaluation and Results
	Quantitative Evaluation: Checking if Distances in Orthophotos are True-To-Life
	Qualitative Evaluation: Visual Inspection of Orthophotos and Sun Correction


