

Cooperative Control of Dual-Arm Concentric Tube Continuum Robots

Hanna Jiamei Zhang, Sven Lilge, M. Taha Chikhaoui, Jessica Burgner-Kahrs

MARSS – International Conference on Manipulation, Automation, and Robotics at Small Scales

July 26th, 2022

Background & Motivation

Concentric Tube Continuum Robots (CTCRs)

Dual-Arm Concentric Tube Continuum Robots (DA-CTCRs)

Overview

Cooperative control of Dual-Arm Concentric Tube Continuum Robots (DA-CTCRs)

<u>Goal</u>: Provide *automatic assistance* in control of DA-CTCRs.

<u>Contribution</u>: a modular hierarchybased control framework, with tasks that can be executed based on priority using *redundancy resolution*.

<u>**Results:</u>** Functionality of *semiautonomous control* demonstrated in a variety of meaningful scenarios on simulated and real robot models.</u>

Control Scheme

Past Work (Detailed)

[Chikhaoui et al., RAL, 2018, Towards Motion Coordination Control and Design Optimization for Dual-Arm Concentric Tube Continuum Robots]

Past Work (Simplified)

[Chikhaoui et al., RAL, 2018, Towards Motion Coordination Control and Design Optimization for Dual-Arm Concentric Tube Continuum Robots]

Proposed Method

Task Prioritization

$$\mathbf{P}_{k} = \mathbf{P}_{k-1} - (\mathbf{J}_{k}\mathbf{P}_{k-1})^{\dagger}(\mathbf{J}_{k}\mathbf{P}_{k-1}) \xrightarrow{\text{Nullspace}}{\text{Projection}}$$

<u>Recursive projection</u> to the nullspace of the prior task Jacobian.

$$\nabla \boldsymbol{\eta}_k(\mathbf{q}) = \begin{cases} \mathbf{J}_k^{\dagger} \boldsymbol{\epsilon}_k(\mathbf{q}), & \text{for tasks errors} \\ \nabla \mathbf{f}_k(\mathbf{q}), & \text{for task gradients} \end{cases} \begin{array}{l} \text{Contribution} \\ \text{of Tasks} \end{cases}$$

$$\mathbf{J}_k^{\dagger} = \mathbf{J}_k^T (\mathbf{J}_k \mathbf{J}_k^T)^{-1}$$

$$\dot{\mathbf{q}}_D = \sum_{k=1}^t \lambda_k \mathbf{P}_{k-1} \nabla \boldsymbol{\eta}_k(\mathbf{q}) \quad \begin{array}{l} \text{Weighted Sum of} \\ \text{All Tasks} \end{array}$$

Task Formulation

Control task gradients are computed using finite differences.

13 UNIVERSITY OF TORONTO

Experimental Evaluation

Physical Setup

Follower

(k=2) Trajectory Tracking of One Arm(k=1) Maintain a relative Distance Between End Effectors

Follower + Manipulability Maximization

1b)

- 1a) (k=3) Manipulability Maximization
 - (k=2) Trajectory Tracking of One Arm
 - (k=1) Maintain a relative Distance Between End Effectors

Triangulation to ...

a relative angle

Conclusion

Summary

Controller is versatile, can prioritize a variety of tasks

→ Can optimize over other quantitative performance indices during control of DA-CTCR

Limitations:

- Finite differences is a local approximation method
- Number of nullspace projections is limited

https://crl.utm.toronto.ca

@BurgnerKahrs

@continuum_robotics_uofT

hannajiamei.zhang @mail.utoronto.ca

Natural Sciences and Engineering Research Council of Canada CANADA FOUNDATION FOR INNOVATION

