

Cooperative Control of Dual-Arm Concentric Tube Continuum Robots

Hanna Jiamei Zhang, Sven Lilge, M. Taha Chikhaoui, Jessica Burgner-Kahrs

MARSS – International Conference on Manipulation, Automation, and Robotics at Small Scales

July 26th, 2022

Background & Motivation

Concentric Tube Continuum Robots (CTCRs)

Dual-Arm Concentric Tube Continuum Robots (DA-CTCRs)

Overview

Cooperative control of Dual-Arm Concentric Tube Continuum Robots (DA-CTCRs)

Goal: Provide *automatic assistance* in control of DA-CTCRs.

Contribution: a modular hierarchybased control framework, with tasks that can be executed based on priority using *redundancy resolution*.

Results: Functionality of *semiautonomous control* demonstrated in a variety of meaningful scenarios on simulated and real robot models.

5

Control Scheme

Past Work (Detailed)

[Chikhaoui et al., RAL, 2018, Towards Motion Coordination Control and Design Optimization for Dual-Arm Concentric Tube Continuum Robots]

Past Work (Simplified)

[Chikhaoui et al., RAL, 2018, Towards Motion Coordination Control and Design Optimization for Dual-Arm Concentric Tube Continuum Robots]

Proposed Method

Task Prioritization

$$
\mathbf{P}_k = \mathbf{P}_{k-1} - (\mathbf{J}_k \mathbf{P}_{k-1})^{\dagger} (\mathbf{J}_k \mathbf{P}_{k-1})
$$
 Nullspace
projection

Recursive projection to the nullspace of the prior task Jacobian.

$$
\nabla \eta_k(\mathbf{q}) = \begin{cases} \mathbf{J}_k^{\dagger} \boldsymbol{\epsilon}_k(\mathbf{q}), & \text{for tasks errors} \\ \nabla \mathbf{f}_k(\mathbf{q}), & \text{for task gradients} \end{cases}
$$
 Contribution

$$
\mathbf{J}^{\dagger}_k = \mathbf{J}^T_k (\mathbf{J}_k \mathbf{J}^T_k)^{-1}
$$

$$
\dot{\mathbf{q}}_D = \sum_{k=1}^t \lambda_k \mathbf{P}_{k-1} \nabla \boldsymbol{\eta}_k(\mathbf{q}) \qquad \text{Weighted Sum of} \\ \text{All Tasks}
$$

Task Formulation

Control task gradients are computed using finite differences.

 $\frac{2}{x}$ UNIVERSITY OF 13

Experimental Evaluation

Physical Setup

Follower

(k=2) Trajectory Tracking of One Arm **(k=1)** Maintain a relative Distance Between End Effectors

Follower + Manipulability Maximization

(k=3) Manipulability Maximization **1a)**

1b)

- **(k=2)** Trajectory Tracking of One Arm
- **(k=1)** Maintain a relative Distance Between End Effectors

Triangulation to …

a relative angle

Conclusion

Summary

Controller is versatile, can prioritize a variety of tasks

 \rightarrow Can optimize over other quantitative performance indices during control of DA-CTCR

Limitations:

- Finite differences is a local approximation method
- Number of nullspace projections is limited

⇔ https://crl.utm.toronto.ca

@CRLaboratory

@BurgnerKahrs

@continuum_robotics_uofT

hannajiamei.zhang @mail.utoronto.ca

Natural Sciences and Engineering Research Council of Canada

INNOVATION.CA CANADA FOUNDATION FOR INNOVATION

